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Readers of Telehealth and Medicine Today might 
ask, “What is the relevance of artificial intelli-
gence (AI) to telehealth and telemedicine?” Not 

surprisingly, the answer lies, at least in part, in the appli-
cation of AI through telehealth to mediate the issues of 
misdistribution of the demand versus supply of health-
care services. That and more are probably possible. 
Understanding the current status of AI in healthcare is 
the first step and the goal of this editorial.

In the last few years, we have witnessed unprece-
dented growth and development in the deployment of 
AI in healthcare. Simultaneously, super-specialization 
and sub-specialization niches in clinical areas have 
also increased. Neurocritical care (NCC) is one such 
area. This communication discusses the present status 
of  some of  the clinical challenges within NCC that AI 
could address. This includes unlocking clinically relevant 
information hidden in massive amounts of  data. In an 
NCC setup, there are limitations and even inefficiencies 
in traditional approaches. It is possible that, eventually, 
AI could help mitigate some of  these issues. However, 
at present, we are in a stage of  transition. We still do 
not have enough data to unequivocally identify all the 
use cases for AI in an NCC unit. The purist may require 
double-blind, randomized controlled, multi-institutional 
cross-over studies before advocating the use of  AI in an 
NCC. However, this is a time-consuming, labor-inten-
sive procedure with several challenges.

The “A” in artificial intelligence should ideally 
stand for Augmenting, Amplifying, Accelerating, and 

Assisting in an Ambient milieu.1 Today, AI is being 
adopted for the management of  critically ill patients 
in an NCC unit. Immersed in voluminous dynamic 
data, secondary to multimodality monitoring (MMM), 
an intensivist could benefit from predictive analytics. 
Components of  AI used in clinical practice include 
machine learning (ML), deep learning (DL), natural 
language processing (NLP), fuzzy logic (FL), con-
volutional neural networks (CNN), and data mining 
(DM). Big data (BD) are large, complex data sets that  
cannot be analyzed using traditional statistical mod-
eling. These components of  AI are increasingly being 
used in NCC.2 Converting computing power to mean-
ingful clinical information is a challenge. The use of  AI 
needs a thorough, systematic evaluation before incor-
poration into management. 

NCC is primarily real-time, dynamic management 
of  critically ill patients with neurological disorders 
with multi-factorial compromised brain functions. 
Management includes real-time analysis of  large volumes 
of  scores from different types of  data. MMM includes 
close monitoring of  ventilation parameters, intracra-
nial pressure (ICP), hemodynamics, body temperature, 
fluid intake-output, and serial neurological examina-
tions. In addition to electrophysiological monitoring of 
brain and cardiac functions, AI predicts earlier neuro-
logical deterioration, enabling better management and 
outcomes. Predicting a rise in ICP, sub-clinical seizures, 
and maintaining pulmonary functions are AI-enabled 
illustrations.3

https://orcid.org/0000-0003-3156-7782
mailto:drkganapathy@gmail.com
https://doi.org/10.30953/thmt.v9.502


Telehealth and Medicine Today © 2024, 9: 502 - https://doi.org/10.30953/thmt.v9.5022
(page number not for citation purpose)

Krishnan Ganapathy

Challenges for NCC Teams
The complexity of data from each patient often overburdens 
the NCC teams. In a state-of-the-art neuro ICU, there might 
be 200 variables to analyze. The Miller principle states that 
humans can only consider two variables efficiently and 
concurrently in a decision-making process. This capacity 
is lost when dealing with more than seven variables.4 The 
“black box” factor makes it impossible to understand how 
an ML model came to a particular conclusion. In addition, 
intensivists cannot precisely compute how they arrive at 
a final decision. The AI decision is based on the analysis 
of voluminous, reliable, relevant data. Regulations suggest 
that the beneficiary (the patient) has a right to an expla-
nation as to how recommendations were made by models 
and algorithms.5 The author has, in a previous publication, 
pointed out that “ever-changing, futuristic, user-friendly, 
uncomplicated regulatory requirements promoting compli-
ance and adherence are needed” for the deployment of AI 
in clinical practice. This is particularly so for NCC.6 

Predicting Future Events
The ability to predict future events and trends is crucial. 
To this end, digital twins and predictive analytics play a 
role.

The Digital Twin
Digital twins are digital replicas of the physical environ-
ment with voluminous, continually changing data. The 
methodology for building an NCC digital twin is based 
on a thorough understanding of underlying pathophysiol-
ogy. These models enable the testing of clinical decisions 
in an actionable way, in an “in silico” environment, before 
executing treatment strategies on living patients. A vali-
dated model for training and clinical practice in an NCC 
unit has been proposed.7

Predictive Analytics
Predictive analytics uses data from MMM of complex and 
dynamic interacting electrophysiologic indices obtained 
from critical neurologically ill patients to foresee events 
before their occurrence. Data are visualized on multiple 
monitors in multiple formats or presented as text displays. 
This increases the probability of error, as providers must 
collect, maintain, and integrate data mentally. Taking 
into account this information overload, data visualiza-
tion should be intuitive and user-friendly with graphical 
displays.8 

Clinical Use Cases of AI in an NCC Unit
Critical care specialists must quickly process huge volumes 
of data and act on them urgently. The NCC environment 
involves EEGs, multimodal intracranial monitoring, and 
complex imaging. BD focuses on description, prediction, 
and prescription, which are difficult for a human to do 

in real-time.9 As critically ill children with acute neuro-
logical injury have higher mortality and morbidity, pre-
dictive models would be beneficial. An ML approach 
independently identified previously known causes of sec-
ondary brain injury.10 In an NCC setting, integrating large 
volumes of complex critical information into effective 
clinical decisions to improve patient outcomes is manda-
tory, and AI could be a valuable aid.11

There are many specific clinical use cases where AI 
interventions have been attempted in an NCC. Every 
NCC patient has a constellation of multiple, complex, 
co-existing clinical conditions. Hence, there are major lim-
itations even in describing the current standard of care, 
challenges, and gaps in clinical management for individ-
ual clinical conditions. 

At present, AI is primarily contemplated as a use case for 
a specific clinical condition, not for a combination of mul-
tiple clinical conditions, as encountered in the real world. 
“Standard” protocols are, at best, guidelines and are neces-
sarily individualized in different NCC units. The published 
literature is insufficient to unequivocally demonstrate how 
the proposed AI or algorithm would address these chal-
lenges. Providing concrete examples and data to support 
ideas, while necessary to enhance credibility and applicabil-
ity, may not be possible without more studies.

Acute Kidney Injury
Acute kidney injury (AKI), which leads to poor prog-
nosis and high mortality, is common in the neuro ICU. 
Ensemble ML models have been developed for predicting 
AKI following brain surgery. Four ML algorithms have 
been used. These include C5.0, support vector machine 
(SVM), Bayes Optimization, and Extreme Gradient 
Boost (XGBoost). The incidence of AKI in critically ill 
patients following brain surgery was reportedly 20.8%. 
Intra-operative blood pressure, postoperative oxygen-
ation index, oxygen saturation, creatinine, albumin, and 
urea and calcium levels were associated with postopera-
tive AKI occurrence. The ensemble ML algorithm could 
be useful in forecasting AKI.12

Antibiotic Choice
Long-term effects after the implementation of comput-
er-assisted decision support systems have been studied. 
Adherence to locally adapted guidelines improved from 
60% to 90% (post-implementation), decreasing ICU mor-
tality significantly when implementing rational antibiotic 
treatment.13

Brain Death
Confirmation of brain death is particularly relevant in an 
NCC unit.14,15 Prediction based on ensembled artificial 
neural networks (ANNs) in a neurosurgical ICU has been 
reported.16
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Deep Venous Thrombosis
An ML-based clinical pre-test probability strategy has 
been reported for deep venous thrombosis (DVT). Pre-
test prediction models simplified and improved interven-
tion and diagnostic processes among patients in the neuro 
ICU with suspected DVT. The study was carried out on 
518 patients, where 189 eventually developed DVT.17

Delirium
Earlier identification of delirium in a NICU is possible 
with AI. Real-time heart rate variability, assisted by ML 
techniques has been used.18 Static and dynamic ML algo-
rithms have been trained, tested, and externally validated 
to predict the earlier onset of delirium. The static model, 
using data from the first 24 h, predicted delirium. The 
dynamic model predicted delirium up to 12 h in advance, 
enabling proactive intervention.19 Wang et al. 20 validated 
and deployed models for predicting delirium in critically 
ill adult patients on ICU admission. Delirium occurred 
within 48 h. 24-h models enabled delirium prediction for 
patients discharged one day after ICU admission. 

Electrophysiology and Neuroimaging
DL has been used to classify ICP waveforms and poten-
tial clinical applications. Patients with poor outcomes 
showed a lower incidence of normal waveforms. Analysis 
of the shape of the ICP pulse waveform and its temporal 
change was critical. Data were taken from continuous ICP 
recordings with parenchymal probes. An inverse relation-
ship was found for ICP less than 20 mm Hg, with mark-
edly increased occurrence of pathological waveforms in 
the unfavorable outcome group.21

Infections
There is a time delay between the onset of sepsis and 
changes in laboratory values, which delays the diagnosis of 
new episodes of sepsis. Incorporating vital signs with elec-
tronic health records (EHR) enables accurate ML predic-
tion of sepsis onset 4 to 12 h before clinical identification.22 
Multivariate Logistic Regression (LR), along with the least 
absolute shrinkage and selection operator regression, has 
been used to predict the possibility of intracranial infection 
in patients with external ventricular drainage.23

Intracranial Pressure
DL, a hierarchical form of ML, has been deployed to 
model the relationship between ICP and waveform mor-
phology, enabling accurate detection of ICP. The algorithm 
was 92.05% ± 2.25% accurate. The CNN was effective in 
learning the properties of ICP beat waveforms.24

Major Morbidity and Mortality
Bihorac et al.25 described the development and valida-
tion of an ML risk algorithm for major complications 

and death after surgery. In a single-center cohort of more 
than 51,000 surgical patients undergoing major inpatient 
surgery, the authors developed a framework for a preop-
erative risk algorithm (MySurgeryRisk). Existing clinical 
data in the EHR were used to predict the occurrence of 
eight major postoperative complications (AKI, cardio-
vascular complications, ICU admission >48 h, mechan-
ical ventilation >48 h, neurologic complications, sepsis, 
venous thromboembolism, wound infections) and death 
at 1, 3, 6, 12 and 24 months after surgery. These patients 
were operated on by 590 different surgeons. An algorithm 
was developed, universally applicable for any type of sur-
gery while using all available data in an EHR platform, 
with the capacity for automation and implementation in 
real-time clinical workflow. For each patient, 285 preop-
erative factors were studied. This is an example of the 
enormous amount of data that can be analyzed using AI, 
leading to improved care and outcomes compared with 
current practices.25 

Yu et al.26 used ML approaches for prediction of mor-
tality in patients undergoing craniotomy for various indi-
cations; 67 variables were studied. Optimal parameters for 
ML algorithm models included LR, random forest (RF), 
SVM, ANN, and extreme gradient boosting (XGBoost). 
Python and R were used for statistical analyses. XGBoost 
was found to be superior to black-box models like SVM 
and ANN. Multiple variables were found to have statis-
tically significant prognostic value on the outcome of 
craniotomy using traditional statistical techniques. Using 
comparative models and application of ML, minimum 
heart rate, maximum temperature, maximum magnesium, 
minimum white blood cell (WBC) count, minimum albu-
min, uric acid, diastolic pressure, minimum and maxi-
mum creatine kinase isoenzymes and age at mortality 
were found to have the greatest impact on the outcome. 

Parkinsonism
Clinical improvements in patients with Parkinson’s 
disease who underwent bilateral deep brain stimulation 
of the subthalamic nucleus could be predicted based on 
a multitask DL-based microelectrode recording analysis. 
This could help determine the appropriate electrode loca-
tion in new patients.27 

Postoperative Complications
Postoperative complications have been predicted using 
automated real-time EHR data and mobile device out-
puts.28 An ML gradient boosting algorithm generates 
models that predict early postoperative complications 
(EPC). Pathology and surgery-related variables (anatom-
ical localization, histology, surgical access) were better 
predictors of EPC. The model predicted complications 
with 70% accuracy, outperforming conventional statisti-
cal methods.29
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Seizures
Studies with ML models predicting the onset of early 
seizures following intracerebral hemorrhage have been 
reported. Variables considered included cortical hema-
toma location, volume >10ml, age <65 years, anticoag-
ulant and antiplatelet use, Glasgow Coma Scale (GCS), 
international normalized ratio, and systolic blood pres-
sure. Reliable prediction could improve patient selection 
for EEG monitoring and commencement of prophylactic 
seizure medications.30

Stroke
AI has been used in early detection, diagnosis, treat-
ment, outcome prediction, and prognosis evaluation 
in stroke management. Prediction models for 28-day 
in-hospital mortality in elderly patients with ischemic 
stroke are available. The XGBoost model based on ML 
exhibited the best short-term death prediction accuracy 
compared with traditional LR methods and other ML 
algorithms. Useful predictors include elevated oxygen 
saturation, aspartate aminotransferase, neutrophils, 
heart rate, WBC count, creatinine, BUN level, and 
lymphocytes.31

Traumatic Brain Injury
A simple ML-based algorithm predicted mortality among 
ICU patients following traumatic brain injury (TBI). 
Data were derived from patients with TBI in three ICUs. 
Algorithms based on ICP, mean arterial pressure, cerebral 
perfusion pressure, and GCS to predict 30-day mortality 
had greater than 80% accuracy.32 ML-based algorithms for 
prognosticating TBI in the elderly are available. Variables 
included blood test reports, clinical status, co-morbidi-
ties, epidemiological factors, mechanical ventilation, and 
surgery. Thirty-day mortality was studied. Age, body 
temperature, pupillary nonreactivity, GCS, Abbreviated 
Injury Scale score, WBC count, calcium, and mechani-
cal ventilation were independently associated with mor-
tality using LR. ML algorithms showed slightly higher 
accuracy than LR. AdaBoost and RF performed slightly 
better than LR in predicting the mortality of geriatric 
patients with TBI.33

Risks and Challenges in Deploying AI in NCC
Clinical use of AI in an NCC is not without risks. There 
could be an inadvertent bias even in the development of 
the initial algorithm. Data used to train an AI system 
might not be truly representative of NCC patients. Data 
might be incomplete, or numbers might be inadequate. 
This could result in a skewed outcome, low accuracy lev-
els, and analytical errors. Challenges include developing 
an algorithm that is easier to use and better than existing 
clinical decision support systems. The gold standard is to 
prove that AI betters healthcare outcome in a patient in 

the NCC, compared to real-time, evidence-based deci-
sions taken by an experienced neurointensivist. Deploying 
AI in the NCC should be compared with anticipated 
benefits such as improved diagnostic accuracy, efficiency 
gains, or enhanced patient outcomes. Publications dealing 
with adequate numbers specifically addressing these spe-
cific areas are awaited.

Conclusion
After reviewing the main findings and insights gained, 
and assessing the pros and cons of implementing AI in 
NCC, the author concludes that there is a long way to 
go before any evidence-based conclusion can be drawn 
regarding the efficacy or otherwise of using AI in an NCC 
unit. Preliminary reports, however, justify the necessity 
for detailed studies with much larger populations. The 
co-existence of multiple clinical conditions in the same 
individual further compounds the problem of proving a 
direct cause and effect, even when the assistance of AI is 
sought for an individual clinical condition.

Time alone will tell if  AI in NCC will be a bane or a 
boon. Remote use of AI designed for NCC in smaller 
critical care units is possible with a good telemedicine 
system. After all, distance today is meaningless. AI will 
be adopted in a neurointensivist’s armamentarium when 
there is evidence that AI betters outcomes cost-effectively. 
Artificial intelligence should never replace a compassion-
ate intensivist. Hopefully, the AI-enabled intensivist will 
spend more time empathizing with the family and the 
patient instead of being drowned in voluminous data. 
The application of AI in the NICU should, at best, be an 
enabler, a sophisticated tool to help achieve an end and 
not an end by itself.
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Appendix:  Acronyms used in the article

AI: artificial intelligence 

AKI: acute kidney injury

ANNs: artificial neural networks 

BD: big data

CNN: Convolutional Neural Network 

DL: deep learning

EPC: early postoperative complications 

FL: fuzzy logic

GCS: Glasgow Coma Scale

EHR: electronic health records

ICP: intracranial pressure 

LR: logistic regression 

ML: machine learning 

MMM: multimodality monitoring 

NCC: neurocritical care

NLP: natural language processing

RF: random forest

TBI: traumatic brain injury 
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