Deployment of Artificial Intelligence in Neuro Critical Care

Authors

  • Krishnan Ganapathy, MCh (Neurosurgery), FACS, FICS, FAMS, PhD Director, Apollo Telemedicine Networking Foundation & Apollo Tele Health Services, Chennai, Tamilnadu, India https://orcid.org/0000-0003-3156-7782

DOI:

https://doi.org/10.30953/thmt.v9.502

Keywords:

AI, artificial intelligence, neurocritical care, neurointensive care

Downloads

Download data is not yet available.

Author Biography

Krishnan Ganapathy, MCh (Neurosurgery), FACS, FICS, FAMS, PhD, Director, Apollo Telemedicine Networking Foundation & Apollo Tele Health Services, Chennai, Tamilnadu, India

https://orcid.org/0000-0003-3156-7782

References

Ganapathy K, Abdul SS, Nursetyo AA. Artificial intelligence in neurosciences: A clinician's perspective. Neurol India. 2018;66(4):934-9. doi: 10.4103/0028-3886.236971

Suarez JI. Big Data/AI in Neurocritical Care: Maybe/Summary. Neurocrit Care. 2022;37:166-9. doi: 10.1007/s12028-021-01422-x

Al-Mufti F, Dodson V, Lee J, Wajswol E, Gandhi C, Scurlock C, et al. Artificial intelligence in neurocritical care. J Neurol Sci. 2019 Sep 15;404:1-4. doi: 10.1016/j.jns.2019.06.024

Miller GA. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychological review. 1956;63:81-97.

Moss L, Corsar D, Shaw M, Piper I, Hawthorne C. Demystifying the Black Box: The Importance of Interpretability of Predictive Models in Neurocritical Care. Neurocrit Care. 2022;37:185–91. doi: https://doi.org/10.1007/s12028-022-01504-4

Ganapathy K. Artificial Intelligence and Healthcare Regulatory and Legal Concerns. TMT. 2021;6. https://doi.org/10.30953/tmt.v6.252

Dang J, Lal A, Flurin L, James A, Gajic O, Rabinstein AA. Predictive modeling in neurocritical care using causal artificial intelligence. World J Crit Care Med 2021;10:112-9. doi: 10.5492/wjccm.v10.i4.112

Alkhachroum A, Kromm J, De Georgia MA. Big data and predictive analytics in neurocritical care. Curr Neurol Neurosci Rep. 2022:19-32. doi: 10.1007/s11910-022-01167-w

Foreman B. Neurocritical Care: Bench to Bedside (Eds. Claude Hemphill, Michael James) Integrating and Using Big Data in Neurocritical Care. Neurotherapeutics. 2020;17:593-605. doi: 10.1007/s13311-020-00846-1

Munjal NK, Clark RSB, Simon DW, Kochanek PM, Horvat CM. Interoperable and explainable machine learning models to predict morbidity and mortality in acute neurological injury in the pediatric intensive care unit: secondary analysis of the TOPICC study. Front Pediatr. 2023;11:1177470. doi: 10.3389/fped.2023.1177470

Noh SH, Cho PG, Kim KN, Kim SH, Shin DA. Artificial Intelligence for Neurosurgery: Current State and Future Directions. J Korean Neurosurg Soc. 2023;66:113-20. doi: 10.3340/jkns.2022.0130

Wu M, Jiang X, Du K, Xu Y, Zhang W. Ensemble machine learning algorithm for predicting acute kidney injury in patients admitted to the neurointensive care unit following brain surgery. Sci Rep. 2023;13:6705. doi: 10.1038/s41598-023-33930-5

Nachtigall I, Tafelski S, Deja M, Halle E, Grebe MC, Tamarkin A, et al. Long-term effect of computer-assisted decision support for antibiotic treatment in critically ill patients: a prospective 'before/after' cohort study. BMJ open. 2014;4:e005370. doi: 10.1136/bmjopen-2014-005370

Ganapathy K. Brain death revisited. Neurol India. 2018;66:308-15. doi: 10.4103/0028-3886.227287

Haranath SP, Ganapathy K, Kesavarapu SR, Kuragayala SD. eNeuroIntensive Care in India: The Need of the Hour. Neurol India. 2021;69:245-51. doi: 10.4103/0028-3886.314591

Liu Q, Cui X, Abbod MF, Huang S-J, Han Y-Y, Shieh J-S. Brain death prediction based on ensembled artificial neural networks in neurosurgical intensive care unit J Taiwan Institute of Chemical Engineers. 2011;42:97–107. doi: https://doi.org/10.1016/j.jtice.2010.05.006

Luo L, Kou R, Feng Y, Xiang J, Zhu W. Cost-Effective Machine Learning Based Clinical Pre-Test Probability Strategy for DVT Diagnosis in Neurological Intensive Care Unit. Clin Appl Thromb Hemost. 2021;27:10760296211008650. doi: 10.1177/10760296211008650

Oh J, Cho D, Park J, Na SH, Kim J, Heo J, et al. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning. Physiological measurement. 2018;39:035004. doi: 10.1088/1361-6579/aaab07

Gong KD, Lu R, Bergamaschi TS, Sanyal A, Guo J, Kim HB, et al. Predicting Intensive Care Delirium with Machine Learning: Model Development and External Validation. Anesthesiology. 2023;138:299-311. doi: 10.1097/ALN.0000000000004478

Wang ML, Kuo YT, Kuo LC, Liang HP, Cheng YW, Yeh YC, et al. Early prediction of delirium upon intensive care unit admission: Model development, validation, and deployment. J Clin Anesth. 2023;88:111121. doi: 10.1016/j.jclinane.2023.111121

Mataczynski C, Kazimierska A, Uryga A, Burzynska M, Rusiecki A, Kasprowicz M. End-to-End Automatic Morphological Classification of Intracranial Pressure Pulse Waveforms Using Deep Learning. IEEE JBHI. 2022;26:494-504. doi: 10.1109/JBHI.2021.3088629

Rush B, Celi LA, Stone DJ. Applying machine learning to continuously monitored physiological data. Journal of clinical monitoring and computing. 2019;33:887-93. doi: 10.1007/s10877-018-0219-z

X. Lu, J. Zhu, J. Gui, Q. Li. Prediction of All-cause Mortality with Sepsis-associated Encephalopathy in the ICU Based on Interpretable Machine Learning. 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, Guangxi, China. 2022:298-302. doi: 10.1109/ICMA54519.2022.9856126

Quachtran B, Hamilton R, Scalzo F. Detection of Intracranial Hypertension using Deep Learning. Proc IAPR Int Conf Pattern Recogn. 2016;2016:2491-6. doi: 10.1109/ICPR.2016.7900010

Bihorac A, Ozrazgat-Baslanti T, Ebadi A, Motaei A, Madkour M, Pardalos PM, et al. MySurgeryRisk: Development and Validation of a Machine-learning Risk Algorithm for Major Complications and Death After Surgery. Ann Surg 2019;269:652-62. doi: 10.1097/SLA.0000000000002706

Yu R, Wang S, Xu J, Wang Q, He X, Li J, et al. Machine Learning Approaches-Driven for Mortality Prediction for Patients Undergoing Craniotomy in ICU. Brain Inj. 2021;35:1658-64. doi: 10.1080/02699052.2021.2008491

Park KH, Sun S, Lim YH, Park HR, Lee JM, Park K, et al. Clinical outcome prediction from analysis of microelectrode recordings using deep learning in subthalamic deep brain stimulation for Parkinson`s disease. PLoS One 2021;16:e0244133. Doi: 10.1371/journal.pone.0244133

Ren Y, Loftus TJ, Datta S, Ruppert MM, Guan Z, Miao S, et al. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform. JAMA Netw Open. 2022;5:e2211973. doi: 10.1001/jamanetworkopen.2022.11973

van Niftrik CHB, van der Wouden F, Staartjes VE, Fierstra J, Stienen MN, Akeret K, et al. Machine Learning Algorithm Identifies Patients at High Risk for Early Complications After Intracranial Tumor Surgery: Registry-Based Cohort Study. Neurosurgery. 2019;85:E756-E764. doi: 10.1093/neuros/nyz145

Published

2024-06-30

How to Cite

Ganapathy , K. (2024). Deployment of Artificial Intelligence in Neuro Critical Care. Telehealth and Medicine Today, 9(3). https://doi.org/10.30953/thmt.v9.502