Predictive Models to Optimize Resources in Tele Critical Care in Distributed Hospital Networks
DOI:
https://doi.org/10.30953/thmt.v8.408Keywords:
eICU, eICU collaborative research database, electronic ICU, intensive care, length of stay prediction, mortality prediction, resource management, tele-critical care, telemedicineAbstract
Background: Telemedicine creates the opportunity – in pandemic conditions and otherwise -- to spread health care to regions where intensivists and health services may not beavailable. It offers the opportunity to provide better patient care, decrease healthcare costs, and overall improve population health.
Introduction: Critical care telemedicine has increased in deployment due to its impact on providing care at all times of the day as well as in reaching remote regions of the world. Tele-critical care (Tele-CC) systems can provide concurrent service to several hospitals andcan manage available resources more efficiently than traditional ICUs.
Materials and Methods: This study utilizes the Philips eICU system and its CollaborativeResearch Database (eICU-CRD) to evaluate intensive care operations in the electronic ICU setting, with the objective of analyzing where and how system engineering techniques can bepotentially applied to enhance the effectiveness of such environments.
Results: Several metrics are evaluated, including patient outcomes, APACHE score, length of stay and type of unit in regard to the age of the patient. Prediction models based on decision and regression trees are presented to estimate mortality and length of stay.
Discussion: Prediction models offer the potential to optimize the Tele-CC environment by helping to estimate the number of patients who will remain in the ICU during the following days.
Conclusion: Prediction models accurately estimate mortality and length of stay in ICU. The estimation of future number of patients can be used to determine the resources needed at each hospital, as well as to provide insight on potential savings when Tele-CC centers provide concurrent services to multiple hospitals.
Downloads
References
Scalvini S, Vitacca M, Paletta L, Giordano A, Balbi B. Telemedicine:
a new frontier for effective healthcare services. Monaldi
Arch Chest Dis. 2004;61(4). doi: 10.4081/monaldi.2004.686
Rheuban KS. The role of telemedicine in fostering health-care
innovations to address problems of access, specialty shortages
and changing patient care needs. J Telemed Telecare.
;12(2_suppl):45–50. doi: 10.1258/135763306778393171
Arneson SL, Tucker SJ, Mercier M, Singh J. Answering the call:
Impact of Tele-ICU nurses during the COVID-19 pandemic.
Crit Care Nurse. 2020;40(4):25–31. doi: 10.4037/ccn2020126
Gamus A, Keren E, Kaufman H, Chodick G. Synchronous
video telemedicine in lower extremities ulcers treatment: A real-
world data study. Int J Med Inform. 2019;124:31–6. doi:
1016/j.ijmedinf.2019.01.009
Young K, Gupta A, Palacios R. Impact of telemedicine in pediatric
postoperative care. 2019;25(11):1083–9. doi: 10.1089/
tmj.2018.0246
Uscher-Pines L, McCullough C, Dworsky MS, Sousa J, Predmore
Z, Ray K, et al. Use of telehealth across pediatric subspecialties
before and during the COVID-19 pandemic. JAMA Netw Open.
;5(3):e224759. doi: 10.1001/jamanetworkopen.2022.4759
Howie F, Kreofsky BL, Ravi A, Lokken T, Hoff MD, Fang
JL. Rapid rise of pediatric telehealth during COVID-19
in a large multispecialty health system. Telemed e-Health.
;28(1):93–101. doi: 10.1089/tmj.2020.0562
Leong JR, Sirio CA, Rotondi AJ. eICU program favorably affects
clinical and economic outcomes. Crit Care. 2005;9(5):E22.
doi: 10.1186/cc3814
Udeh C, Udeh B, Rahman N, Canfield C, Campbell J, Hata
JS. Telemedicine/virtual ICU: Where are we and where are we
going? Methodist Debakey Cardiovasc J. 2018;14(2):126–33.
doi: 10.14797/mdcj-14-2-126
Subramanian S, Pamplin JC, Hravnak M, Hielsberg C,
Riker R, Rincon F, et al. Tele-critical care: An update
from the society of critical care medicine tele-ICU committee.
Crit Care Med. 2020;48(4):553–61. doi: 10.1097/
CCM.0000000000004190
Young LB, Chan PS, Lu X, Nallamothu BK, Sasson C, Cram
PM. Impact of telemedicine intensive care unit coverage on
patient outcomes. Arch Intern Med. 2011;171(6):498–506. doi:
1001/archinternmed.2011.61
Sadaka F, Palagiri A, Trottier S, Deibert W, Gudmestad
D, Sommer SE, et al. Telemedicine intervention improves
ICU outcomes. Crit Care Res Pract. 2013;2013:456389. doi:
1155/2013/456389
Shirke MM, Shaikh SA, Harky A. Tele-oncology in the COVID-
era: The way forward? Trends Cancer. 2020;6(7):547–9. doi:
1016/j.trecan.2020.05.013
Courtney E, Blackburn D, Reuber M. Neurologists’ perceptions
of utilising tele-neurology to practice remotely during the
COVID-19 pandemic. Patient Educ Couns. 2021. doi: 10.1016/j.
pec.2020.12.027
Kapoor A, Guha S, Kanti Das M, Goswami KC, Yadav R. Digital
healthcare: The only solution for better healthcare during
COVID-19 pandemic? Indian Heart J. 2020;72(2):61–4. doi:
1016/j.ihj.2020.04.001
AlDossary S, Martin-Khan MG, Bradford NK, Smith AC. A
systematic review of the methodologies used to evaluate telemedicine
service initiatives in hospital facilities. Int J Med Inform.
;97:171–94.
Hwang S. Reducing ICU length of stay: the effect of Tele-ICU.
On-Line J Nurs Inform. 2014;18(3).
Kohl BA, Fortino-Mullen M, Praestgaard A, Hanson CW,
DiMartino J, Ochroch EA. The effect of ICU telemedicine on
mortality and length of stay. J Telemed Telecare. 2012;18(5):282–
doi: 10.1258/jtt.2012.120208
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, et al. PhysioBank, PhysioToolkit, and Physio-
Net. Circulation. 2000;101(23). doi: 10.1161/01.CIR.101.23.
e215
Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi
O. The eICU Collaborative Research Database, a freely
available multi-center database for critical care research. Sci
Data. 2018;5:180178. doi: 10.1038/sdata.2018.178
Berenson RA, Grossman JM, November EA. Does telemonitoring
of patients—The eICU—Improve intensive care? Health
Aff. 2009;28(5):w937–47. doi: 10.1377/hlthaff.28.5.w937
Bauman KA, Hyzy RC. ICU 2020: Five interventions to revolutionize
quality of care in the ICU. J Intensive Care Med.
;29(1):13–21. doi: 10.1177/0885066611434399
The American Telemedicine Association A. Telehealth basics—
ATA [Internet]. Available from: https://www.americantelemed.
org/resource/why-telemedicine/ [cited 7 February 2023].
Lilly CM, Cody S, Zhao H, Landry K, Baker SP, McIlwaine J,
et al. Hospital mortality, length of stay, and preventable complications
among critically ill patients before and after Tele-ICU reengineering
of critical care processes. JAMA. 2011;305(21):2175.
doi: 10.1001/jama.2011.697
Kahn JM, Le TQ, Barnato AE, Hravnak M, Kuza CC, Pike F,
et al. ICU Telemedicine and critical care mortality: a national
effectiveness study. Med Care. 2016;54(3):319–25. doi: 10.1097/
MLR.0000000000000485
Terblanche M, Adhikari NKJ. The evolution of intensive care
unit performance assessment. J Crit Care. 2006;21(1):19–22. doi:
1016/j.jcrc.2005.12.003
Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute
Physiology and Chronic Health Evaluation (APACHE)
IV: Hospital mortality assessment for today’s critically ill
patients*. Crit Care Med. 2006;34(5):1297–310. doi: 10.1097/01.
CCM.0000215112.84523.F0
Collins TA, Robertson MP, Sicoutris CP, Pisa MA, Holena
DN, Reilly PM, et al. Telemedicine coverage for post-operative
ICU patients. J Telemed Telecare. 2017;23(2):360–4. doi:
1177/1357633X16631846
Lam KW, Lai KY. Evaluation of outcome and performance of
an intensive care unit in Hong Kong by APACHE IV model:
–2014. J Emerg Crit Care Med. 2017;1(8):16. doi: 10.21037/
jeccm.2017.07.02
Afessa B, Keegan MT, Hubmayr RD, Naessens JM, Gajic O,
Long KH, et al. Evaluating the performance of an institution
using an intensive care unit benchmark. Mayo Clin Proc.
;80(2):174–80. doi: 10.4065/80.2.174
Anushiravani A, Masoompour SM. Assessing the performance
of a medical intensive care unit: A 5-year single-center experience.
Indian J Crit Care Med. 2017;21(3):163–6. doi: 10.4103/
ijccm.IJCCM_420_16
Barbash IJ, Le TQ, Pike F, Barnato AE, Angus DC, Kahn JM.
The effect of intensive care unit admission patterns on mortality-
based critical care performance measures. Ann Am Thorac
Soc. 2016;13(6):877–86. doi: 10.1513/AnnalsATS.201509-645OC
Awad A, Bader-El-Den M, McNicholas J. Patient length of stay
and mortality prediction: A survey. Health Serv Manag Res.
;30(2):105–20. doi: 10.1177/0951484817696212
Garland A. Improving the ICU. Chest. 2005;127(6):2151–64.
doi: 10.1378/chest.127.6.2151
Timmers TK, Verhofstad MH, Moons KG, Leenen LP. Intensive
care performance: How should we monitor performance in
the future? World J Crit Care Med. 2014;3(4):74. doi: 10.5492/
wjccm.v3.i4.74
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE
II: a severity of disease classification system. Crit Care Med.
;13(10):818–29. doi: 10.1097/00003246-198510000-00009
Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute
Physiology Score (SAPS II) based on a European/North American
multicenter study. JAMA. 1993;270(24):2957–63. doi:
1001/jama.1993.03510240069035
Lemeshow S, Teres D, Pastides H, Avrunin JS, Steingrub
JS. A method for predicting survival and mortality of ICU
patients using objectively derived weights. Crit Care Med.
;13(7):519–25. doi: 10.1097/00003246-198507000-00001
James G, Witten D, Hastie T, Tibshirani R. An introduction to
statistical learning [Internet]. New York, NY: Springer New
York, 2021; 607 p. (Springer Texts in Statistics). Available from:
https://link.springer.com/book/10.1007/978-1-0716-1418-1
Hastie T, Tibshirani R, Friedman J. The elements of statistical
learning. data mining, inference, and prediction [Internet].
New York, NY: Springer New York; 2009. (Springer
Series in Statistics). Available from: http://link.springer.
com/10.1007/978-0-387-84858-7
Breiman L. Classification and regression trees [Internet]. Routledge;
eBook. Available from: https://www.taylorfrancis.
com/books/9781315139470
Johnson AEW, Mark RG. Real-time mortality prediction
in the Intensive Care Unit. AMIA—Annu Symp Proceed.
;2017:994–1003. Available from: http://www.ncbi.nlm.nih.
gov/pubmed/29854167
Kaur D, Panos RJ, Badawi O, Bapat SS, Wang L, Gupta A.
Evaluation of clinician interaction with alerts to enhance performance
of the tele-critical care medical environment. Int J Med
Inform. 2020;139:104165. doi: 10.1016/j.ijmedinf.2020.104165
Wollenstein-Betech S, Cassandras CG, Paschalidis IC. Personalized
predictive models for symptomatic COVID-19 patients using
basic preconditions: Hospitalizations, mortality, and the need for
an ICU or ventilator. medRxiv. 2020;2020.05.03.20089813. doi:
1101/2020.05.03.20089813
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rafael Palacios, PhD, Eugenioio Sánchez-Úbeda, PhD, Ralph Panos, MD, Peniel Argaw, MS, Malika Shahrawat, MEng, Daniel D. Zhang, BS, Angelina Zhang, BS Senior Year, Adam Seiver, MD, PhD, MBA, Omar Badawi, PharmD, MPH, FCCM, Amar Gupta, PhD, MBA, FIEEE
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors retain copyright of their work, with first publication rights granted to Telehealth and Medicine Today (THMT).
THMT is published under a Creative Commons Attribution-NonCommercial 4.0 International License.