Telehealth’s Role Enabling Sustainable Innovation and Circular Economies in Health

Authors

  • Dimitrios Kalogeropoulos, PhD UCL Global Business School for Health, London, UK; EdisonTM Accelerator, London, UK, 3IEEE Standards Association, Healthcare and Life Sciences Practice, New York, https://orcid.org/0000-0002-2765-8326
  • Paul Barach, BSC, MD, MPH Jefferson College of Population Health https://orcid.org/0000-0002-7906-698X

DOI:

https://doi.org/10.30953/thmt.v8.409

Keywords:

artificial intelligence (AI), circular economy, data asymmetry, digital health, health innovation ecosystems, telehealth, value-based care

Abstract

Digital health interventions including telehealth support an increasingly broad range of improvement goals for prevention and treatment. Limitations obstructing the many digital benefits of telehealth from reaching their full potential include lack of robust usability and user centered design, regulatory policy paradigms, lack of adequate high-quality evidence and methodologies to evaluate the performance generalization and clinical robustness. Health innovation is explored in the context of different value systems and a solution is proposed to the fundamental limitations arising in the data value system, an approach to a new telehealth paradigm and incorporated intervention designs which combine clinical innovation with innovation in data resource development. Machine learning and artificial intelligence have the potential to enable circular economies for digital and health innovation, in which sustainable solutions can be offered within a data-enabled collaborative and shared digital ecosystem. Alignment of industry standards, adjustments to regulatory policies, and embracing new governance models for telehealth-based innovation are essential for this new approach to health innovation scaling, clinical adoption and social innovation. Given the trends in technological advances in the past decades, it is likely that healthcare reliance on telehealth will continue to grow.

Downloads

Download data is not yet available.

References

Wherton J, Shaw S, Papoutsi C, et al. Guidance on the introduction and use of video consultations during COVID-19: important lessons from qualitative research. BMJ Leader 2020:leader-2020-000262.

Tabacof L, Wood J, et al. Remote Patient Monitoring Identifies the Need for Triage in Patients with Acute COVID-19 Infection. Telemed J E Health. 2022 Apr;28(4):495-500. doi: 10.1089/tmj.2021.0101. Epub 2021 Jul 22. PMID: 34292768.

Catalyst N. What is telehealth? NEJM Catalyst 2018;4(1).

Salisbury C, O'Cathain A, Edwards L, et al. Effectiveness of an integrated telehealth service for patients with depression: a pragmatic randomised controlled trial of a complex intervention. The Lancet Psychiatry 2016;3(6):515-25.

Davidson L, Boland MR. Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes. Brief Bioinform. 2021 Sep 2;22(5):bbaa369. doi: 10.1093/bib/bbaa369. PMID: 33406530; PMCID: PMC8424395.

Verma A, Towfighi A, Brown A, Abhat A, Casillas A. Moving Towards Equity With Digital Health Innovations for Stroke Care. Stroke. 2022 Mar;53(3):689-697. doi: 10.1161/STROKEAHA.121.035307. Epub 2022 Feb 7. PMID: 35124973; PMCID: PMC8885852.

Martinez-Martin, N., Insel, T.R., Dagum, P. et al. Data mining for health: staking out the ethical territory of digital phenotyping. npj Digital Med 1, 68 (2018). https://doi.org/10.1038/s41746-018-0075-8

Milne, R., Costa, A., & Brenman, N. Digital phenotyping and the (data) shadow of Alzheimer’s disease. Big Data & Society, 9(1), 2022. https://doi.org/10.1177/20539517211070748

Bilal AM, Fransson E, Bränn E, Eriksson A, Zhong M, Gidén K, Elofsson U, Axfors C, Skalkidou A, Papadopoulos FC. Predicting perinatal health outcomes using smartphone-based digital phenotyping and machine learning in a prospective Swedish cohort (Mom2B): study protocol. BMJ Open. 2022 Apr 27;12(4):e059033. doi: 10.1136/bmjopen-2021-059033. PMID: 35477874; PMCID: PMC9047888.

Engelmann, L. Digital epidemiology, deep phenotyping and the enduring fantasy of pathological omniscience. Big Data & Society, 9(1), 2022. https://doi.org/10.1177/20539517211066451

Tomičić A, Malešević A, Čartolovni A. Ethical, Legal and Social Issues of Digital Phenotyping as a Future Solution for Present-Day Challenges: A Scoping Review. Sci Eng Ethics. 2021 Dec 20;28(1):1. doi: 10.1007/s11948-021-00354-1. PMID: 34928438; PMCID: PMC8686352.

Huckvale K, Venkatesh S, Christensen H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. NPJ Digit Med. 2019 Sep 6;2:88. doi: 10.1038/s41746-019-0166-1. PMID: 31508498; PMCID: PMC6731256.

Torous J, Kiang MV, Lorme J, Onnela JP. New Tools for New Research in Psychiatry: A Scalable and Customizable Platform to Empower Data Driven Smartphone Research. JMIR Ment Health. 2016 May 5;3(2):e16. doi: 10.2196/mental.5165. PMID: 27150677; PMCID: PMC4873624.

Jayakumar P, Lin E, Galea V, Mathew AJ, Panda N, Vetter I, Haynes AB. Digital Phenotyping and Patient-Generated Health Data for Outcome Measurement in Surgical Care: A Scoping Review. J Pers Med. 2020 Dec 15;10(4):282. doi: 10.3390/jpm10040282. PMID: 33333915; PMCID: PMC7765378.

Nguyen B, Ivanov M, Bhat V, Krishnan S. Digital phenotyping for classification of anxiety severity during COVID-19. Front Digit Health. 2022 Oct 13;4:877762. doi: 10.3389/fdgth.2022.877762. PMID: 36310921; PMCID: PMC9612961.

Snoswell CL, Chelberg G, De Guzman KR, et al. The clinical effectiveness of telehealth: a systematic review of meta-analyses from 2010 to 2019. Journal of telemedicine and telecare 2021:1357633X211022907.

Snoswell CL, Taylor ML, Comans TA, et al. Determining if telehealth can reduce health system costs: scoping review. Journal of medical Internet research 2020;22(10):e17298.

Snoswell CL, Stringer H, Taylor ML, et al. An overview of the effect of telehealth on mortality: A systematic review of meta-analyses. Journal of telemedicine and telecare 2021:1357633X211023700.

van Niekerk, L., Manderson, L. & Balabanova, D. The application of social innovation in healthcare: a scoping review. Infect Dis Poverty 10, 26 (2021). https://doi.org/10.1186/s40249-021-00794-8

Whyle E, Olivier J. Social values and health systems in health policy and systems research: a mixed-method systematic review and evidence map. Health Policy Plan. 2020 Jul 1;35(6):735-751. https://doi.org/10.1093/heapol/czaa038

Haring, M., Freigang, F., Amelung, V. et al. What can healthcare systems learn from looking at tensions in innovation processes? A systematic literature review. BMC Health Serv Res 22, 1299 (2022). https://doi.org/10.1186/s12913-022-08626-7

Wang A; Ahmed, R; Ray J; Hughes P; Eric McCoy E; Marc A. Auerbach, A, Barach P. Supporting the Quadruple Aim Using Simulation and Human Factors During COVID-19 Care. Am J Med Qual. 2021 Mar-Apr 01;36(2):73-83. doi: 10.1097/01.JMQ.0000735432.16289.d2. PMID: 33830094; PMCID: PMC8030878.

Verhulst S, Young A. Identifying and addressing data asymmetries so as to enable (better) science. Front Big Data. 2022 Jul 18;5:888384 https://doi.org/10.3389/fdata.2022.888384

Final Terms of Reference of the Alliance for Transformative Action on Climate and Health (ATACH), World Health Organization Technical Document, 31 August 2022. Available from: https://www.who.int/publications/m/item/atach-terms-of-reference [Accessed 1 February 2023]

Communication From the Commission to the European Parliament and the Council, 2022 Strategic Foresight Report - Twinning the green and digital transitions in the new geopolitical context, COM/2022/289 final. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52022DC0289&qid=1658824364827 [Accessed 1 February 2023]

Coalition for Digital Environmental Sustainability (CODES). Action Plan for a Sustainable Planet in the Digital Age (2022). Available from: https://doi.org/10.5281/zenodo.6573509 [Accessed 1 February 2023]

Equity within digital health technology within the WHO European Region: a scoping review. World Health Organization, 21 December 2022, WHO/EURO:2022-6810-46576-67595. Available from: https://www.who.int/europe/publications/i/item/WHO-EURO-2022-6810-46576-67595 [Accessed 1 February 2023]

Apweiler R, Beissbarth T, Berthold MR, Blüthgen N, Burmeister Y, Dammann O, et al. Whither systems medicine? Exp Mol Med. 2018 Mar 2;50(3):e453. doi: 10.1038/emm.2017.290. PMID: 29497170; PMCID: PMC5898894.

Schleidgen S, Fernau S, Fleischer H, Schickhardt C, Oßa AK, Winkler EC. Applying systems biology to biomedical research and health care: a précising definition of systems medicine. BMC Health Serv Res. 2017 Nov 21;17(1):761. doi: 10.1186/s12913-017-2688-z. PMID: 29162092; PMCID: PMC5698952.

Soenksen, L.R., Ma, Y., Zeng, C. et al. Integrated multimodal artificial intelligence framework for healthcare applications. npj Digit. Med. 5, 149 (2022). https://doi.org/10.1038/s41746-022-00689-4

Tian Q, Price ND, Hood L. Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J Intern Med. 2012 Feb;271(2):111-21. doi: 10.1111/j.1365-2796.2011.02498.x. PMID: 22142401; PMCID: PMC3978383.

Stahlberg EA, Abdel-Rahman M, Aguilar B, Asadpoure A, Beckman RA, Borkon LL, et al. Exploring approaches for predictive cancer patient digital twins: Opportunities for collaboration and innovation. Front Digit Health. 2022 Oct 6;4:1007784. doi: 10.3389/fdgth.2022.1007784. PMID: 36274654; PMCID: PMC9586248.

Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med. 2019 Apr 5;17(1):114. doi: 10.1186/s12967-019-1864-9. PMID: 30953518; PMCID: PMC6451233...

Davidson L, Boland MR. Towards deep phenotyping pregnancy: a systematic review on artificial intelligence and machine learning methods to improve pregnancy outcomes. Brief Bioinform. 2021 Sep 2;22(5):bbaa369. doi: 10.1093/bib/bbaa369. PMID: 33406530; PMCID: PMC8424395.

Weng C, Shah NH, Hripcsak G. Deep phenotyping: Embracing complexity and temporality-Towards scalability, portability, and interoperability. J Biomed Inform. 2020 May;105:103433. doi: 10.1016/j.jbi.2020.103433. Epub 2020 Apr 23. PMID: 32335224; PMCID: PMC7179504.

Subbiah, V. The next generation of evidence-based medicine. Nat Med 29, 49–58 (2023). https://doi.org/10.1038/s41591-022-02160-z.

Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med. 2022 Sep;28(9):1773-1784. doi: 10.1038/s41591-022-01981-2. Epub 2022 Sep 15. PMID: 36109635.

Webster, K. A Circular Economy Is About the Economy. Circ.Econ.Sust. 1, 115–126 (2021). https://doi.org/10.1007/s43615-021-00034-z

Guo C, Ashrafian H, Ghafur S, Fontana G, Gardner C, Prime M. Challenges for the evaluation of digital health solutions-A call for innovative evidence generation approaches. NPJ Digit Med. 2020 Aug 27;3:110 https://doi.org/10.1038/s41746-020-00314-2

Gomes M, Murray E, Raftery J. Economic Evaluation of Digital Health Interventions: Methodological Issues and Recommendations for Practice. Pharmacoeconomics. 2022 Apr;40(4):367-378. https://doi.org/10.1007/s40273-022-01130-0

Artificial Intelligence Index Report (2022). Stanford Institute for Human-Centered AI, Stanford University. Available at: https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-AI-Index-Report_Master.pdf [Accessed 1 February 2023]

Brent Mittelstadt (2021). The Impact of Artificial Intelligence on the Doctor-Patient Relationship. Research at the Oxford Internet Institute, University of Oxford, United Kingdom Commissioned by the Council of Europe Steering Committee for Human rights in the fields of Biomedicine and Health (CDBIO) Available at: https://rm.coe.int/inf-2022-5-report-impact-of-ai-on-doctor-patient-relations-e/1680a68859 [Accessed 1 February 2023]

Day S, Shah V, Kaganoff S, Powelson S, Mathews SC. Assessing the Clinical Robustness of Digital Health Startups: Cross-sectional Observational Analysis. J Med Internet Res. 2022 Jun 20;24(6):e37677. https://doi.org/10.2196/37677

Bringing the Benefits of Genome Sequencing to the World. Public Policy Projects, Global Insights (2021). Available at: https://publicpolicyprojects.com/policy/ [Accessed 1 February 2023]

Koutsouleris N, Hauser TU, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. Lancet Digit Health. 2022 Oct 10:S2589-7500(22)00153-4. https://doi.org/10.1016/s2589-7500(22)00153-4

Lemmen C, Woopen C, Stock S. Systems medicine 2030: A Delphi study on implementation in the German healthcare system. Health Policy. 2021 Jan;125(1) https://doi.org/10.1016/j.healthpol.2020.11.010

Abdelhalim H, Berber A, Lodi M, Jain R, Nair A, Pappu A, et al. Artificial Intelligence, Healthcare, Clinical Genomics, and Pharmacogenomics Approaches in Precision Medicine. Front Genet. 2022 Jul 6;13:929736 https://doi.org/10.3389/fgene.2022.929736

Tape, TG. Coherence and Correspondence in Medicine. Judgment and Decision Making 4 (2009): 134-140. https://doaj.org/article/0e730c477c6a4ab1937ba3439c0bbc3c

Eliza Strickland. 6 Reactions to the White House’s AI Bill of Rights The nonbinding principles are being both celebrated and vilified. IEEE Spectrum 14 October 2022. Available at: https://spectrum.ieee.org/white-house-ai [Accessed 1 February 2023]

Afolabi O, Parsekar K, Sibson L, Patel A, Fordham R. Cost effectiveness analysis of the East of England stroke telemedicine service. J Stroke Cerebrovasc Dis. 2023 Jan 21;32(4):106939. doi: 10.1016/j.jstrokecerebrovasdis.2022.106939. Epub ahead of print. PMID: 36689794.

Wang SV, Sreedhara SK, Schneeweiss S. Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions. Nat Commun. 2022 Aug 31;13(1):5126. https://doi.org/10.1038/s41467-022-32310-3

Essén A, Stern AD, Hase CB, Car J, Greaves F, Paparova D, et al. Health app policy: international comparison of nine countries' approaches. NPJ Digit Med. 2022 Mar 18;5(1):31. https://doi.org/10.1038/s41746-022-00573-1

Diao JA, Venkatesh KP, Raza MM, Kvedar JC. Multinational landscape of health app policy: toward regulatory consensus on digital health. NPJ Digit Med. 2022 May 11;5(1):61. https://doi.org/10.1038/s41746-022-00604-x

Neal D, Engelsma T, Tan J, Craven MP, Marcilly R, Peute L, et al. Limitations of the new ISO standard for health and wellness apps. Lancet Digit Health. 2022 Feb;4(2):e80-e82. https://doi.org/10.1016/s2589-7500(21)00273-9

Maliha G, Gerke S, Cohen IG, Parikh RB (2021). Artificial Intelligence and Liability in Medicine: Balancing Safety and Innovation. Milbank Q. 2021 Sep;99(3):629-647. https://doi.org/10.1111/1468-0009.12504

Catherine M. Sharkey & Kevin M. K. Fodouop. AI and the Regulatory Paradigm Shift at the FDA, 72 Duke Law Journal Online 86-112 (2022). Available at: https://scholarship.law.duke.edu/cgi/viewcontent.cgi?article=1100&context=dlj_online [Accessed 1 February 2023]

Richardson S, Lawrence K, Schoenthaler AM, Mann D. A framework for digital health equity. NPJ Digit Med. 2022 Aug 18;5(1):119. https://doi.org/10.1038/s41746-022-00663-0

Kaihlanen, AM., Virtanen, L., Buchert, U., et al. Towards digital health equity - a qualitative study of the challenges experienced by vulnerable groups in using digital health services in the COVID-19 era. BMC Health Serv Res 22, 188 (2022). https://doi.org/10.1186/s12913-022-07584-4

Gonzales A, Guruswamy G, Smith SR. Synthetic data in health care: A narrative review. PLOS Digital Health 2(1): e0000082, 2023. https://doi.org/10.1371/journal.pdig.0000082

Reiner Benaim A, Almog R, Gorelik Y, Hochberg I, Nassar L, Mashiach T, et al. Analyzing Medical Research Results Based on Synthetic Data and Their Relation to Real Data Results: Systematic Comparison From Five Observational Studies. JMIR Med Inform. 2020 Feb 20;8(2):e16492. doi: 10.2196/16492. PMID: 32130148; PMCID: PMC7059086.

Kokosi T, Harron K. Synthetic data in medical research. BMJ Medicine 2022;1:e000167. doi: 10.1136/bmjmed-2022-000167

Ishii-Rousseau JE, Seino S, Ebner DK, Vareth M, Po MJ, Celi LA. The “Ecosystem as a Service (EaaS)” approach to advance clinical artificial intelligence (cAI). PLOS Digit Health 1(2): e0000011, 2022. https://doi.org/10.1371/journal.pdig.0000011

Wang SV, Sreedhara SK, Schneeweiss S. REPEAT Initiative. Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions. Nat Commun. 2022 Aug 31;13(1):5126. doi: 10.1038/s41467-022-32310-3. PMID: 36045130; PMCID: PMC9430007.

Rudrapatna VA, Butte AJ. Opportunities and challenges in using real-world data for health care. J Clin Invest. 2020 Feb 3;130(2):565-574. doi: 10.1172/JCI129197. PMID: 32011317; PMCID: PMC6994109.

Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts. European Commission, Brussels, 21.4.2021, COM(2021) 206 final 2021/0106 (COD). Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 [Accessed 1 February 2023]

Why health-care services are in chaos everywhere. The Economist, 15 January 2023. Available at: https://www.economist.com/finance-and-economics/2023/01/15/why-health-care-services-are-in-chaos-everywhere [Accessed 1 February 2023]

Siegler JE, Patel NN, Dine CJ. Prioritizing Paperwork Over Patient Care: Why Can't We Do Both? J Grad Med Educ. 2015 Mar;7(1):16-8. doi: 10.4300/JGME-D-14-00494.1. PMID: 26217415; PMCID: PMC4507919

Doctors Wasting Over Two-Thirds Of Their Time Doing Paperwork. Forbes, Innovation in Healthcare. 7 September 2016. Available at: https://www.forbes.com/sites/brucelee/2016/09/07/doctors-wasting-over-two-thirds-of-their-time-doing-paperwork/ [Accessed 1 February 2023]

Field RI. Why is health care regulation so complex? P T. 2008 Oct;33(10):607-8. PMID: 19750043; PMCID: PMC2730786

Braithwaite J. Changing how we think about healthcare improvement BMJ 2018; 361 :k2014 doi:10.1136/bmj.k2014

Hudson CC, Gauvin S, Tabanfar R, Poffenroth AM, Lee JS, O'Riordan AL. Promotion of role clarification in the Health Care Team Challenge. J Interprof Care. 2017 May;31(3):401-403. doi: 10.1080/13561820.2016.1258393. Epub 2017 Jan 31. PMID: 28140704

Ly, O., Sibbald, S.L., Verma, J.Y. et al. Exploring role clarity in interorganizational spread and scale-up initiatives: the ‘INSPIRED’ COPD collaborative. BMC Health Serv Res 18, 680 (2018). https://doi.org/10.1186/s12913-018-3474-2

RS Patel, R Bachu, A Adikey, M Malik, M Shah. Factors related to physician burnout and its consequences: a review. Behav Sci (Basel)2018; 8:98 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262585/.10.3390/bs8110098.30366419.

RL Gardner, E Cooper, J Haskell. Physician stress and burnout: the impact of health information technology. J Am Med Inform Assoc2019; 26:106-114 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647171/.10.1093/jamia/ocy145.30517663.

Berbís MA, McClintock DS, Bychkov A, Van der Laak J, Pantanowitz L, Lennerz JK, et al. Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade. EBioMedicine. 2023 Jan 3;88:104427. doi: 10.1016/j.ebiom.2022.104427. Epub ahead of print. PMID: 36603288; PMCID: PMC9823157.

‘Practicing At The Top Of Your License’ And The ‘Great’ American Healthcare Labor Arbitrage. Forbes, Innovation in Healthcare. 4 April 2022. Available at: https://www.forbes.com/sites/sachinjain/2022/04/04/the-great-american-healthcare-labor-arbitrage/ [ Accessed 1 February 2023]

Subbe C, Barach P. Impact of Electronic Health Records on Pre-defined Safety Outcomes in Patients Admitted to Hospital. A Scoping Review. BMJ Open. 2011;11:e047446.

Califf RM. Now is the time to fix the evidence generation system. Clinical Trials. 2023;0(0). doi:10.1177/17407745221147689.

Dlima S, Shevade S, Menezes S, Ganju A. Digital Phenotyping in Health Using Machine Learning Approaches: Scoping Review. JMIR Bioinform Biotech 2022;3(1):e39618. URL: https://bioinform.jmir.org/2022/1/e39618 DOI: 10.2196/39618

Kanazawa N, Iijima H, Fushimi K. In-hospital cardiac rehabilitation and clinical outcomes in patients with acute myocardial infarction after percutaneous coronary intervention: a retrospective cohort study. BMJ Open. 2020 Sep 29;10(9):e039096. doi: 10.1136/bmjopen-2020-039096. PMID: 32994256; PMCID: PMC7526270.

Bruce CR, Harrison P, Nisar T, Giammattei C, Tan NM, Bliven C, Shallcross J, Khleif A, Tran N, Kelkar S, Tobias N, Chavez AE, Rivera D, Leong A, Romano A, Desai SN, Sol JR, Gutierrez K, Rappel C, Haas E, Zheng F, Park KJ, Jones S, Barach P, Schwartz R. Assessing the Impact of Patient-Facing Mobile Health Technology on Patient Outcomes: Retrospective Observational Cohort Study. JMIR Mhealth Uhealth. 2020 Jun 26;8(6):e19333. doi: 10.2196/19333. PMID: 32589161; PMCID: PMC7381069.

Parretti C, Tartaglia R, La Regina M, Venneri F, Sbrana G, Mandò M, Barach P. Improved FMEA Methods for Proactive Health Care Risk Assessment of the Effectiveness and Efficiency of COVID-19 Remote Patient Telemonitoring. Am J Med Qual. 2022 Nov-Dec 01;37(6):535-544. doi: 10.1097/JMQ.0000000000000089.

Hartl, D., de Luca, V., Kostikova, A. et al. Translational precision medicine: an industry perspective. J Transl Med 19, 245 (2021). https://doi.org/10.1186/s12967-021-02910-6

Published

2023-02-27

How to Cite

Kalogeropoulos, PhD, D. ., & Barach, BSC, MD, MPH, P. (2023). Telehealth’s Role Enabling Sustainable Innovation and Circular Economies in Health. Telehealth and Medicine Today, 8(1). https://doi.org/10.30953/thmt.v8.409

Issue

Section

Narrative/Systematic Reviews/Meta-Analysis

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)